
Logic Program Synthesis in a Higher-Order
Setting

David Lacey1, Julian Richardson2, and Alan Smaill1

1 Division of Informatics, University of Edinburgh
2 Dept. of Computing & Electrical Engineering, Heriot-Watt University, Edinburgh

Abstract. We describe a system for the synthesis of logic programs
from specifications based on higher-order logical descriptions of appro-
priate refinement operations. The system has been implemented within
the proof planning system λClam . The generality of the approach is such
that its extension to allow synthesis of higher-order logic programs was
straightforward. Some illustrative examples are given. The approach is
extensible to further classes of synthesis.

1 Introduction

Earlier work on the synthesis of logic programs has taken the approach of con-
structing a program in the course of proving equivalence to a specification, which
is written in a richer logic than the resulting program.

Typically, quantifiers and thus binding of variables are present in the specifi-
cation, and have to be manipulated correctly. We extend earlier work using as far
as possible a declarative reading in a higher-order logic. The higher-order proof
planning framework which we employ provides a more expressive language for
writing methods, allows some methods to be entirely replaced by higher-order
rewrite rules, and automatically takes care of variable scoping. While allowing
first-order examples to be dealt with more easily than is possible in a less power-
ful proof planning language, we can also synthesise higher-order logic programs
with minimal change to the underlying machinery.

The paper is organised as follows. §2 covers earlier work in the area; §3
describes the proof planning framework used here. §4 explains the methods used
in the synthesis task, §5 shows how these methods apply for synthesis of higher-
order programs, and §6 presents discussion and future work. We concentrate in
this paper on the proof planning level, and omit technical details of the logic.
The code and examples are available at:
http://dream.dai.ed.ac.uk/software/systems/lambda-clam/lpsynth/

2 Background

Our starting point is work on program synthesis via automatic proofs of equiv-
alence between a specification in predicate calculus, and an implementation in
a restricted, executable, subset of the logic. The work in [13,14,1,12] gives the

J. Lloyd et al. (Eds.): CL 2000, LNAI 1861, pp. 87–100, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

http://dream.dai.ed.ac.uk/software/systems/lambda-clam/lpsynth/

88 David Lacey, Julian Richardson, and Alan Smaill

general principles, and following this work, we also aim to automate and control
the synthesis process using proof planning (see §3).

The specifications of a program we will be working with are complete speci-
fications of the form:

∀x. pred(x) ↔ spec(x) (1)

pred(x) is the predicate whose definition we wish to synthesise. spec(x) is a log-
ical formula describing the program. The aim is to prove an equivalence with a
synthesised program, in a restricted logic, initially that of horn programs (Horn
programs translate straightforwardly into pure Prolog programs) in the termi-
nology of [1], i.e. to find a horn body : horn(x) such that the specification will
follow from the following program definition:

∀x. pred(x) ↔ horn(x) (2)

The program is normally initially completely undetermined, and is therefore
represented by a meta-variable.1

Unifications which are carried out (for example during rewriting) as the
proof of this equivalence is constructed instantiate the (initially only one) meta-
variables in the program. This technique of successive instantiation of meta-
variables during the construction of a proof is known as middle-out reasoning
[2]. Refinement operators in the form of derived inference rules allow the problem
to be decomposed, while partially instantiating the synthesised program.

We are also interested in a more general problem, parameterised synthesis,
which allows a much more flexible representation for the syntax of specification.
It adds conditions to the synthesis of programs. So a specification is of the form:

∀x. cond(x) → ∀y. pred(x, y) ↔ spec(x, y) (3)

Additional kinds of specifications such as those described in [15] could also
be considered.

Various aspects of this work suggest that a higher-order logical description is
appropriate for the task, and that indeed a formulation in a higher-order meta-
logic would provide a better foundation for this approach – see for example
[10]. A higher-order formulation gives us a direct treatment of quantification
and variable binding, respecting α-conversion of bound variables, and scoping
restrictions on variable instantiations that occur in the synthesis process. In
addition both first-order logic and higher-order logic can be represented.

Thus the instantiation of higher-order variables standing for as yet unde-
termined program structure is given a declarative treatment. The higher-order
approach also extends easily to synthesis of programs in a higher-order logic.

Unification of higher-order terms is provided by λProlog, which uses a version
of Huet’s algorithm. There may therefore be more than one higher-order unifier,
and unification may not terminate. In practice, this does not seem to hinder the
1 Meta-variables are not variables of the specification/proof calculus, but instead vari-

ables of the proof system we use to reason about this calculus, i.e. they are variables
at the metalevel. They may be instantiated to terms in this calculus.

Logic Program Synthesis in a Higher-Order Setting 89

synthesis process, but this is a topic which should be investigated further. In
contrast, Kraan restricts unification to higher-order patterns [18].

Although we use a language with full higher-order unification many of its
uses are for higher-order matching of a pattern to a sub-term of a specification.
Higher-order matching appears in existing work on functional program transfor-
mation and synthesis, for example in [11].

3 Proof Planning

A proof of a theorem can be attained by applying sound derivation rules to
certain axioms until the theorem is reached. Alternatively, one can start with a
theorem and back-chain through the rules until axioms are reached. The search
space defined by these rules, however, is too large to be exhaustively searched
for anything except the most trivial theorems. So some heuristic search control
must be used to guide the search.

Certain sequences of steps following schematic patterns are commonly used
to prove theorems. These sequences of steps are called tactics. When to apply
certain tactics can be recognised from the syntactic form of the current goal
to be proved and the outcome of applying these tactics can be easily derived
from the goal. The λClam system [20] uses objects called methods which detail
the conditions and results of applying such tactics. The stated preconditions of
applying a tactic allow methods to encode heuristic control knowledge about
planning a proof.

So, instead of searching the space of applying derivation rules, λClam searches
the space of methods at the meta-level. On succeeding with the search it pro-
duces a proof plan which details which tactics have to be applied. This plan
can then be used to construct a proof of the theorem in terms of the original
derivation rules. Further search control can be added by linking the methods
together via methodicals, the planning analogue of tacticals.

The methods in λClam are compound data structures consisting of:

– The name of the method.
– The syntactic form of a goal to which the method can be applied.
– The preconditions that goals must meet for the method to be applied.
– The effects that hold of subgoals after the method is applied.
– The form of the subgoal(s) after the method is applied.
– The tactic which implements the method.

Methodicals link the methods together to control search. They are functions
which take methods as arguments and return a new method.

90 David Lacey, Julian Richardson, and Alan Smaill

4 Controlling the Synthesis Process

4.1 Example 1: Symbolic Evaluation

For an example method used in λClam to prove theorems, we consider symbolic
evaluation. This method rewrites a term in the goal formula to an equivalent
term. An example rewrite rule is:

plus(s(X), Y) :⇒ s(plus(X, Y))

where X, Y are meta-level variables. The left hand side of the rewrite is matched
with a term in the goal and rewritten to the right hand side.

The soundness of a rewrite is usually based on an underlying equivalence, or
equality, such as:

∀x, ∀y. plus(s(x), y) = s(plus(x), y)
With such underlying equivalences we can soundly replace a term in a goal

matching the left hand side of a rewrite with the right hand side. The resultant
goal with the rewritten term will be equivalent to the previous goal. Therefore,
proving the new goal will also prove the old goal. Rewriting with implications is
also carried out, with appropriate checking of polarity.

The use of higher-order rewrite rules can reduce the amount of special-
purpose machinery needed by the theorem prover since some proof steps which
would normally be implemented using separate machinery can be expressed as
higher-order rewrite rules (in the style of [4]), for example:

∃x. Q(x) ∧ (x = Y) ∧ P (x) :⇒ Q(Y) ∧ P (Y).

This rewrite cannot be stated as a first order rewrite and proved useful in
several synthesis proofs. Many such rewrites need to be duplicated to cope with
associative and commutative permutations of a pattern and A-C matching could
have been useful but was not implemented in λClam.

Thus the method sym eval is specified as follows.

Input Goal: Any.
Output Goal: The same as the input goal with any sub-term

of the goal rewritten if it matches the left hand
side of a rewrite in a prestored list. The rewrit-
ing is done exhaustively so no rewritable sub-
term will exist in the output goal.

Precondition: The goal must contain a subterm that matches
the left hand side of a stored rewrite.

Postcondition: None
Tactic: A rewrite can be taken as a simple proving

step or as a compound step consisting of rea-
sonings about equalities in the hypothesis or
background theory.

Logic Program Synthesis in a Higher-Order Setting 91

4.2 Example 2: Induction

The method of induction splits a goal containing a universally quantified vari-
able into base case and step case goals. The splitting of the goal is performed
by matching the goal to one of a prestored set of induction schemes. The induc-
tion scheme used is important since it determines the recursive structure of the
program.

To illustrate, here is the goal in the synthesis of subset:

∀i, j. subset(i, j) ↔ H(i, j)
`
∀i, j. subset(i, j) ↔ ∀x. member(x, i) → member(x, j)

Here, the capitalised H represents a meta-variable to be instantiated to the
program body.

Applying the induction method on variable i will split the goal into two
subgoals:2

Base Case
∀j. subset(nil, j) ↔ H(nil, j)
`
∀i, j. subset(nil, j) ↔ ∀x. member(nil, i) → member(x, j)

Step Case
∀j. subset(t, j) ↔ H(t, j)
`
∀j. subset(h :: t, j) ↔ ∀x. member(x, h :: t) → member(x, j)

The program meta-variable H is now partially instantiated with a recursive
structure matching the induction scheme:

H = λx. λy. (x = nil) ∧B(x, y) ∨
∃x′, xs. x = x′ :: xs ∧ S(x′, xs, y)

Where B and S are new higher-order meta-variables. B will be instantiated
during the proof of the base case goal and S during the step case. This illustrates
the parallel between induction in the proof and recursion in the program.

4.3 Example 3: Unrolling

An example of a method added to specifically aid logic program synthesis is
unrolling. This is a technique for eliminating existential quantifiers. It performs
a structural case split based on the type of the variable quantified. For example
the following rewrite could be used:

∃x : nat. P (x) :⇒ P (0)∨ ∃x′ : nat. P (s(x′))
2 h and t are newly introduced constants.

92 David Lacey, Julian Richardson, and Alan Smaill

This performs a structural case split on the variable x into its base case and a
constructor case. Many inductive function definitions are defined for either side
of a structural split such as this, for example this definition of list append:

app(nil, Y) :⇒ Y app(H :: T, Y) :⇒ H :: app(T, Y)

So unrolling an existential quantifier in this way can often allow a rewrite rule to
be applied. This method comes up reasonably often in synthesis of logic programs
since logic programs often include existential quantifiers. For example, during an
induction in the synthesis of backn:

∀n, x.backn(n, x, h :: z) ↔ ∃k. app(k, x) = h :: z ∧ length(x) = n3

the existential quantifier can be unrolled to give term:

app(nil, x) = h :: z ∨ ∃k′, k′′. app(k′ :: k′′, x) = h :: z

This can be rewritten into the goal and the proof can continue since the definition
of app can be used.

The technique is applied when directed to by rippling [3], a heuristic which
restricts the application of rewriting in order to successively reduce the differ-
ences between an induction hypothesis and conclusion.

One problem with unrolling is that it does not terminate. In fact, any ap-
plication of an unrolling step can be immediately followed by another unrolling
step so it easily causes looping. A heuristic is needed to decide when to apply it.
The one chosen was that an unrolling step can only be applied once per inductive
step case proof. This ensures termination but may limit the number of programs
that can be synthesised.

The method unroll is specified as follows.

Input Goal: A goal containing an existential quantifier.
Output Goal: The same as the input goal with the existentially

quantified subterm replaced with its structural case
split.

Precondition: A rewrite must exist that will be applicable only af-
ter the split. This is directed by rippling. The un-
rolling method cannot have been used previously in
the proof of the current step case goal.

Postcondition: None
Tactic: This is a higher-order rewrite. So the appropriate

tactic for rewriting can be used.

3 backn is the relation between a number n, a list and the suffix of the same list of
length n

Logic Program Synthesis in a Higher-Order Setting 93

4.4 Methods Used by the System

A brief description of the different proof planning methods used is given in Table
1. The methods are tried in the following order: symbolic evaluation, tautology
check, induction, appeal to program, auxiliary synthesis. If a method succeeds
then the the methods are tried again in the same order on the resultant goal(s).
The exception to this is step case goal(s) of induction where the methods of
rippling, unrolling, shared variable introduction and case splitting are repeatedly
tried in that order. The resulting planning engine was successfully tested on a
number of synthesis examples, including all those from [12].

Table 1. Methods used by λClam

Method Description
symbolic evaluation Performs rewriting. See Section 4.1
conditional rewriting Performs rewriting depending on whether a con-

dition attached to the rewrite rule is fulfilled.
case split Splits a goal into several goals with different sides

of a case split in their hypotheses. This is applied
so that a conditional rewrite can be applied.

tautology checking Completes the proof plan if the goal is a tautology
i.e. true by virtue of its logical connectives.

induction Splits a universally quantified goal into base case
and step case goals as in mathematical induction.

rippling Annotates the goal so the rippling heuristic can
be used. Rippling is a heuristic that only allows
rewriting steps that reduce the difference between
the conclusion and the hypothesis of a step case
goal of induction.

unrolling Performs a structural case split on an existential
quantifier. See Section 4.3.

shared variable
introduction

This method introduces an existentially quantified
variable that is shared across an equality i.e. it
performs the rewrite: P (Q) = R :⇒ ∃z.P (z) =
R ∧ Q = z. This is directed by rippling.

appeal to the program This method tries to finish the proof plan by uni-
fying the program body in the hypothesis with the
specification in the goal. For this to succeed the
specification must have been transformed to the
executable logic subset we are interested in.

auxiliary synthesis This method tries to synthesise a predicate that
is equivalent to a sub-formula of the current goal.
This auxiliary predicate can then be used to pro-
duce a full synthesis.

5 Synthesising Higher-Order Logic Programs

Given our approach, it is natural to consider the synthesis of programs that
are themselves in higher-order logic; in particular, programs in λProlog [19]. We

94 David Lacey, Julian Richardson, and Alan Smaill

were also interested in parameterised synthesis. Surprisingly, both of these were
successfully carried out with only minor modifications to the system developed
for the first-order case, supporting our case that higher-order proof planning
provides a good framework for program synthesis. Section 5.1 gives some exam-
ples of how λClam encodes and manipulates the logic while Sections 5.2 and
5.3 describe the results of higher-order program synthesis and parameterised
synthesis.

5.1 Encoding of the Object Logic

The proof planner λClam reasons about formulae in a generic typed higher-order
logic. First-order terms in this logic are represented by objects of λProlog type
oterm and formulas are represented by objects of λProlog type form.

Functions in the object logic are represented in λProlog as terms of function
type. Stored within the system are predicates describing the object level type
of the function and its arity. For example the function plus is represented by
the λProlog function plus. The object level type and arity of this function are
stored as predicates describing plus. Quantifiers are represented as higher-order
functions, taking as arguments an object type and a function to a formula and
returning a function.

This leads to a very neat representation of formulae. For example, below is a
formula stating the commutativity of plus (note that functions are curried and
x\ is λProlog syntax for lambda abstraction of variable x):4

forall nat x\ (forall nat y\ (eq (x plus y) (y plus x)))

One advantage of this representation is that the bound variables x and y are
bound by lambda abstraction. The programming language takes care of some of
the reasoning of the proof planner. For example, equality modulo α-conversion
is handled by λProlog.

This representation can be extended to handle higher-order quantifiers needed
to reason about higher-order logic programs.5 For example we can have a quanti-
fier forallp1 to quantify over first order predicates and can represent statements
about them, for example:

forallp1 p\ (exists nat x\ (p x)) or (forall nat x\ (not (p x)))

5.2 Higher-Order Program Synthesis

Synthesising higher-order programs is different from synthesising first-order pro-
grams in the following way:
4 forall,nat and eq are all terms defined in λProlog, not part of the programming

language itself.
5 Functions of the object-level logic are represented by functions in the meta-level

logic; a consequence of this simple encoding is that there is one quantifier for each
arity of function/predicate over which we wish to quantify. A less direct encoding
could avoid this inconvenience.

Logic Program Synthesis in a Higher-Order Setting 95

– The specification of the programs involves quantification over higher-order
objects.

– The program definition contains quantification over higher-order objects.
– The program may not be restricted to horn clauses, so it becomes harder to

know when a program is synthesised.

The last point is relevant when trying to synthesise programs in a language
such as λProlog where the executable subset of logic is large but the notion of
consequence is different to that in the logic we are proof planning in (in particular
when proving in λProlog there is no inductive consequence).

In order to synthesise higher-order programs, λClam needs to be extended to
recognise ∀ quantifiers over higher-order objects, such as the forallp1 predicate
mentioned in the previous section.

Significantly, this was the only change needed to the code in λClam to do
higher-order program synthesis. An example specification of a higher-order logic
program is the all hold predicate:

∀p, l. all hold(p, l) ↔ ∀x. member(x, l) → p(x)

Which yields synthesised program:

∀p, l. all hold(p, l) ↔ l = nil ∨ (∃h, t. l = h :: t ∧ p(h) ∧ all hold(p, t))

This synthesis uses the methods of symbolic evaluation, tautology checking,
induction, rippling and shared variable introduction (see table 1).

5.3 Parameterised Synthesis

Parameterised synthesis performs synthesis where the specification holds under a
certain condition. Specifications are of the form (3) in Section 2, which effectively
allows synthesis proofs to be parameterised and capture a group of syntheses
in one go. Two examples which show the parameterisation were successfully
synthesised.

The examples capture the type of synthesis that converts a function into a
relation where we know how to recursively evaluate a function. Example syn-
theses of this type were the syntheses of rapp and rplus. Two parameterised
syntheses can be done (one for lists and one for natural numbers). Here is the
(higher-order) natural number specification (note that the meta-predicate prog
is to indicate that its argument is allowed to appear in the final synthesised
program body):

∀f, f1, f2. (prog(f1) ∧ prog(f2)
f(zero) = f1 ∧ ∀x. f(s(x)) = f2(f(x))
→
∀y, z. rnat(f, f1, f2, y, z) ↔ f(y) = z)

This yields the synthesised (higher-order) program :

96 David Lacey, Julian Richardson, and Alan Smaill

∀f, f1, f2, y, z. rnat(f, f1, f2, y, z) ↔ (y = zero ∧ z = f1) ∨
(∃y′, z′. y = s(y′) ∧ z = f2(z′) ∧

rnat(f, f1, f2, y′, z′))

Parameterised syntheses promise to provide a framework for more sophisti-
cated synthesis. The programs that can be synthesised using this method needs
investigation. The type of syntheses that could be achieved include:

Synthesis Based on Assumptions. Some programs are based on assumptions
about the input data (in the case of logic programming on assumptions about one
or more of the arguments of a relation). For example, some sorting algorithms
are based on assumptions about the data distribution of the elements of the list
being sorted, multiplication in the case where one of the arguments in a power of
two is often handled with a different program than general multiplication. Such
programs can be synthesised from conditional specifications.

General Classes of Synthesis. Many syntheses follow the same pattern of
proof. Parameterised synthesis allows these general syntheses to be performed.
One example is given in the results of this project but other general patterns
will exist.

The advantage of performing these general syntheses is that they are much
more likely to match future specifications and be reused as components (see
Section 6.2).

Examples of higher-order and parameterised synthesis are in §A.2.

6 Discussion

6.1 Comparison with Other Systems

Synthesis in Clam, Kraan. A similar system to the one presented is given
in [12]. The λClam implementation can synthesise all the examples given in this
work. However, in [12] a method is given to automatically obtain certain lemmas
based on the properties of propositional logic; these were hand-coded into our
system. The same technique would work with the more recent proof-planner.

The advantage of the λClam (implemented in λProlog) over the Clam (im-
plemented in Prolog) system is the ease with which one can move to higher-order
programs. Using λProlog as a meta-logic we can assure that code written for the
first-order case will be compatible with the higher-order case. This is due to the
fact that higher-order quantification can be raised to the programming language
level and does not need to be dealt with at the level of the actual program except
in relatively few areas.

Lau and Prestwich. In [16], Lau and Prestwich present a synthesis system
based on the analysis of folding problems. The system is similar to synthesis by

Logic Program Synthesis in a Higher-Order Setting 97

proof planning in that both systems apply transformation steps in a top down
fashion.

The system presented here is different from Lau and Prestwich’s system is
several ways. Firstly, Lau and Prestwich’s system only synthesises partially cor-
rect programs and not necessarily complete ones, whereas λClam synthesises
totally correct programs.

Secondly, Lau and Prestwich’s work requires user interaction in the specifica-
tion of the recursive calls of the program before synthesis and in the choosing of
strategies during synthesis. We aim at fully automated synthesis. The recursive
form of a program synthesised by proof planning is decided by the choice of in-
duction scheme and which variable the induction is performed on. The amount
of user interaction in Lau and Prestwich’s system does allow more control over
the type of program synthesis and can synthesise certain programs which are
beyond this work (in [17], several types of sorting algorithms are synthesised, for
example).

Higher-order program synthesis has not been tried by Lau and Prestwich’s
methods.

Schema-Based Synthesis. In schema-based synthesis (or transformation)
common programming patterns are encoded as pairs 〈P1, P2〉, where the Pi are
program patterns which contain meta-variables. Synthesis proceeds recursively
by finding a schema whose first element matches part of the specification. This
part is then replaced by the appropriately instantiated second element of the
schema. The majority of schema-based synthesis systems are either mostly man-
ually guided (for example [6]), or apply schemas exhaustively (for example [21]).
In order to achieve automation, we can associate applicability heuristics to pro-
gram synthesis schemas, which then become much like proof planning methods
[7].

Higher-order program synthesis has not been covered by schema based ap-
proaches. [8] represents schemas in λProlog to make them more extensible. It is
feasible that this approach could be adapted to higher-order program schemas. In
[9], an approach is given for synthesising definite-clause grammars which could
represent higher-order schemas. The synthesis process depends on sample in-
put/output pairs and so is more like inductive program synthesis rather than
the deductive approach given here.

One way of viewing parameterised synthesis is the synthesis of program
schemas.

6.2 Further Work

Empirical Testing. We have successfully synthesised many examples from the
existing literature. However, as in many AI systems, the extent of the system is
only obtainable by empirical investigation. More work is needed to fully discover
which kinds of algorithm we can synthesise given the current heuristic techniques
encoded in the proof planner.

98 David Lacey, Julian Richardson, and Alan Smaill

Further Heuristic Control. The proof planning framework of methods and
methodicals can be extended to enlarge the class of programs that can be syn-
thesised. For example, searching and sorting algorithms along with certain more
complicated higher order programs such as filtering a list could not be synthe-
sised given current work. Progress is likely to involve analyzing the techniques
used to create certain types of program. In particular, the choice of induction
and induction variable in a proof determine the structure of recursion in a pro-
gram. Increasing the planner’s ability to find and choose induction schemes will
doubtless lead to greater power of synthesis.

Component Based Synthesis. When people write programs, they often reuse
a lot of existing code. In contrast, our system can synthesise programs from
specifications but each synthesis is individual and synthesised programs are not
reused. This is clearly a limitation, which we would like to address in the future.

One form of program reuse can be achieved by deriving rewrite rules from
previously synthesised programs, and using these during the synthesis of new
programs.

As pointed out in [5], however, exact matches between specifications and
specifications of stored program fragments are rare, and a specialised matching
system is required.

6.3 Summary

We have provided a higher-order formulation of logic program synthesis that
subsumes earlier work in the area. To implement this work some general features
needed to be added to λClam and also some methods particular for synthesis
were created.

The extended flexibility allowed higher-order programs to be synthesised as
well as other first-order programs that were beyond other approaches. We believe
the use of λProlog and the λClam system were key to allowing these extensions
with practically no change to the code. Some questions remain on judging the
correctness of higher-order program syntheses. However, the extensions indicate
the system is capable of being developed to achieve quite powerful and flexible
fully automated syntheses.

Acknowledgements

The authors gratefully acknowledge the anonymous referees for their comments
on this paper. The research was supported by EPSRC grant GR/M45030, and
EPSRC funding for David Lacey’s MSc in Artificial Intelligence.

References

1. David Basin, Alan Bundy, Ina Kraan, and Sean Matthews. A framework for pro-
gram development based on schematic proof. In Proceedings of the 7th International

Logic Program Synthesis in a Higher-Order Setting 99

Workshop on Software Specification and Design (IWSSD-93), 1993. Also available
as Max-Planck-Institut für Informatik Report MPI-I-93-231 and Edinburgh DAI
Research Report 654.

2. A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations in
automatic program synthesis. In S. L.H. Clarke, editor, Proceedings of UK IT 90,
pages 221–6. IEE, 1990. Also available from Edinburgh as DAI Research Paper
448.

3. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling:
A heuristic for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993.
Also available from Edinburgh as DAI Research Paper No. 567.

4. A. Felty. A logic programming approach to implementing higher-order term rewrit-
ing. In L-H Eriksson et al., editors, Second International Workshop on Extensions
to Logic Programming, volume 596 of Lecture Notes in Artificial Intelligence, pages
135–61. Springer-Verlag, 1992.

5. Bernd Fischer and Jon Whittle. An integration of deductive retrieval into deductive
synthesis. In Proceedings of the 14th IEEE International Conference on Automated
Software Engineering (ASE’99), pages 52–61, Cocoa Beach, Florida, USA, October
1999.

6. P. Flener and Y. Deville. Logic program synthesis from incomplete specifications.
Journal of Symbolic Computation: Special Issue on Automatic Programming, 1993.

7. P. Flener and J. D. C. Richardson. A unified view of programming schemas and
proof methods. In LOPSTR ’99: Preproceedings of the Ninth International Work-
shop on Logic Program Synthesis and Transformation, Venice, Italy, September
1999, 1999.

8. T. Gegg-Harrison. Representing logic program schemata in lambdaprolog. Tech-
nical report, Dept Computer Science, Winona State University, 1995.

9. J. Haas and B. Jayaraman. From context-free to definite-clause grammars: A
type-theoretic approach. Journal of Logic Programming, 30, 1997.

10. J. Hannan and D. Miller. Uses of higher-order unification for implementing pro-
gram transformers. In R. A. Kowalski and K. A. Bowen, editors, Proceedings of the
Fifth International Conference and Symposium, pages 942–59. MIT Press, 1988.

11. G. Huet and B. Lang. Proving and applying program transformation expressed
with second order patterns. Acta Informatica, 11:31–55, 1978.

12. I. Kraan. Proof Planning for Logic Program Synthesis. PhD thesis, Department of
Artificial Intelligence, University of Edinburgh, 1994.

13. I. Kraan, D. Basin, and A. Bundy. Logic program synthesis via proof planning.
In K. K. Lau and T. Clement, editors, Logic Program Synthesis and Transforma-
tion, pages 1–14. Springer-Verlag, 1993. Also available as Max-Planck-Institut für
Informatik Report MPI-I-92-244 and Edinburgh DAI Research Report 603.

14. I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program synthe-
sis. In D. S. Warren, editor, Proceedings of the Tenth International Conference on
Logic Programming. MIT Press, 1993. Also available as Max-Planck-Institut für
Informatik Report MPI-I-93-214 and Edinburgh DAI Research Report 638.

15. K.-K. Lau and M. Ornaghi. Forms of logic specifications. A preliminary study.
In J. Gallagher, editor, LOPSTR ’96, number 1207 in Lecture Notes in Computer
Science, pages 295–312. Springer-Verlag, 1996.

16. K.-K. Lau and S.D. Prestwich. Top-down synthesis of recursive logic procedures
from first-order logic specifications. In D.H.D. Warren and P. Szeredi, editors,
Proc. 7th Int. Conf. on Logic Programming, pages 667–684. MIT Press, 1990.

17. K.-K. Lau and S.D. Prestwich. Synthesis of a family of recursive sorting proce-
dures. In V. Saraswat and K. Ueda, editors, Proc. 1991 Int. Logic Programming
Symposium, pages 641–658. MIT Press, 1991.

18. D. Miller. A logic programming language with lambda abstraction, function vari-
ables and simple unification. Technical Report MS-CIS-90-54, Department of Com-
puter and Information Science, University of Pennsylvania, 1990. Appeared in Ex-
tensions of Logic Programming, edited by P. Schröder-Heister, Lecture Notes in
Artificial Intelligence, Springer-Verlag.

100 David Lacey, Julian Richardson, and Alan Smaill

19. D. Miller and G. Nadathur. An overview of λProlog. In R. Bowen, K. & Kowalski,
editor, Proceedings of the Fifth International Logic Programming Conference/ Fifth
Symposium on Logic Programming. MIT Press, 1988.

20. J.D.C Richardson, A. Smaill, and Ian Green. System description: proof planning
in higher-order logic with lambdaclam. In Claude Kirchner and Hélène Kirchner,
editors, 15th International Conference on Automated Deduction, volume 1421 of
Lecture Notes in Artificial Intelligence, Lindau, Germany, July 1998.

21. W. W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic pro-
gram analysis and optimisation using enhanced schema-based transformations. In
Proceedings of LoPSTr’95, Fifth International Workshop on Logic Program Syn-
thesis and Transformation, Utrecht, Netherlands, volume 1048 of Lecture Notes in
Computer Science, pages 175–188. Springer Verlag, 1996.

A Sample Example Synthesis Results

Here is a sample of some of the specifications from which λClam can successfully
synthesis programs.

A.1 First-Order Programs

Name Specification
subset ∀i, j. subset(i, j) ↔ ∀x. member(x, i) → member(x, j)
max ∀x, l. max(x, l) ↔ member(x, l) ∧ ∀y. (member(y, l) → leq(y, x))
add3 ∀w, x, y, z. add3(x, y, z, w) ↔ w + (x + y) = z

replicate ∀x, y. replicate(x, y) ↔ ∀z.member(z, y) → z = x
front ∀x, y. front(x, y) ↔ ∃k. app(x, k) = y
frontn ∀x, y, n. frontn(x, y, n) ↔ (∃k. app(x, k) = y) ∧ (length(x) = n)

A.2 Higher-Order Horn Clause Examples

Name Specification
listE ∀p, x, y. (listE p x y) ↔ (p x) ∧ (member x y)
all hold ∀f, l. (all hold f l) ↔ ∀x. (member x l) → (f x)

takep ∀p, x, y. (takep p x y) ↔
(∃z, k. (app x z :: k) = y

∧ ∀n. (member n x) → (p n)
∧ ¬(p z))

subsetp ∀p, x, y. (subsetp p x y) ↔ (∀z. (member z x) → (member z y)) ∧
(∀z. (member z x) → (p z))

A.3 Parameterised Synthesis

Name Specification

rnat ∀f, f1, f2.(

(prog f1) ∧
(prog f2) ∧
(f zero) = f1 ∧
(∀x. (f (s x)) = (f2 (f x)))

) → ∀x, y. (rnat f f1 f2 x y) ↔
(f x) = y

rlst ∀f, f1, f2.(

(prog f1) ∧
(prog f2) ∧
(f nil) = f1 ∧
(∀h, t. (f h :: t) = (f2 h (f t)))

) → ∀x, y. (rlst f f1 f2 x y) ↔
(f x) = y

	Introduction
	Background
	Proof Planning
	Controlling the Synthesis Process
	Example 1: Symbolic Evaluation
	Example 2: Induction
	Example 3: Unrolling
	Methods Used by the System

	Synthesising Higher-Order Logic Programs
	Encoding of the Object Logic
	Higher-Order Program Synthesis
	Parameterised Synthesis

	Discussion
	Comparison with Other Systems
	Further Work
	Summary

	Sample Example Synthesis Results
	First-Order Programs
	Higher-Order Horn Clause Examples
	Parameterised Synthesis

