Graphical reasoning in symmetric monoidal categories

Lucas Dixon, University of Edinburgh

Joint work with: Ross Duncan and Aleks Kissinger, University of Oxford

5 Nov 2009

Outline

• Motivation: characterise processes (quantum computation)
• Symmetric Monoidal Categories and Graphs
• Example with boolean circuits
• Extended graphs, Matching and Plugging
• Inductive patterns of graphs with !-boxes

Symmetric Monoidal Categories (SMC)

• C is a monoidal category: it has associative and unital bifunctor \otimes:
 – \otimes operation on objects: $X \otimes Y$; and specific identity object I (\otimes is associative and has I as identify)
 – \otimes operation on morphisms: if $f : X \to Y'$ and $g : X' \to Y'$
 then $(f \otimes g) : (X \otimes X') \to (Y \otimes Y')$
 (associative and has identity id)
• Braided: has ‘braiding’ isomorphisms: $\sigma_{X,Y} : X \otimes Y \to Y \otimes X$.
• Symmetric: $\sigma_{X,Y} \circ \sigma_{Y,X} = id$.

Typed Graphs = SMC

Category Theory \Rightarrow swap edges and vertices \Rightarrow tensor is spacial

• already the generic way to draw processes, e.g. circuits:
 Vertices are operations and Edges are objects,
• Coherence conditions provide correctness for graphical notation:
 equality for graph = equality for SMC
Graphical Representation

\[f \otimes g := \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \quad g \circ f := \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

- We can express the bifunctoriality of \(\otimes \) and the symmetric braiding of \(\sigma \) as:

\[\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

Example: Boolean Circuits

Values: \(B = \{0, 1\} \); Operations: \(N : B \otimes B \to B \), \(C : B \to B \otimes B \), \(\perp : B \to 1 \)

Graphical Equations:

\[\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} N = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} N = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} N = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} N = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]

Graphical Reasoning:

- Goal:

 to develop suitable formalism for reasoning about equational structure in symmetric monoidal categories.

- Based on SMC as graphs.

- Incident edges to a vertex define its type

- ‘subject reduction’: rewriting preserves types

- rewriting and plugging commute (plugging doesn’t break matching)

- reason with common inductive structures
Graphs

- **Directed graph**: $E \xrightarrow{s} t \xrightarrow{\text{▶}} V$

 Any number of edges are allowed between vertices (not a binary relation)

- $G = (G_E, G_V, s, t); E = G_E; V = G_V; \text{in}(v) := t^{-1}(v); \text{out}(v) := s^{-1}(v)$

- **graph morphism** (graphs: G, H) $f_E : E_G \rightarrow E_H$ and $f_V : V_G \rightarrow V_H$ where:

 $s_H \circ f_E = f_V \circ s_G$

 $t_H \circ f_E = f_V \circ t_G$

Extended Open Graphs

- **Extended open graph**: (G, X)

 $X \subseteq V$ (exterior); $\text{Int} G = V \setminus X$ (interior)

- **Exterior vertices define an interface** (hierarchical)

 a subgraph has the same character as a vertex

- **Morphism of open graphs**: $f : (G, G_X) \rightarrow (H, H_X)$ (only map to H_X from G_X)

 $\forall v \in V_G. f_V(v) \in \partial H \Rightarrow v \in \partial G$

- **Strict Morphism**: $f : (G, G_X) \rightarrow (H, H_X)$ (no extra interior edges)

 $\forall e \in E_H. s_H(e) \in f_V(\text{Int} G) \lor t_H(e) \in f_V(\text{Int} G) \Rightarrow \exists e' \in E_G. f_E(e') = e.$

- There is also a topological interpretation: morphisms as continuous maps

Matching for Extended Graphs

- **Relaxed subgraph**: cut and relaxed

 - **cut an edge**: introduce two-clique new exterior vertices

 - **cut a vertex**: throw away data, make exterior

 - **relax a vertex**: makes incidence 1 ‘loving’ vertex-cliques of exterior vertex

 - **love**: relation between cliques of exterior vertices

- $G \leq H$ (G matches H) $\exists f$ which is an open graph morphism from a relaxed G to a relaxed subgraph of H, such that (it is an **exact embedding**):

 1. f is a strict love morphism; (locally preserves type)
 2. f_E and f_V are injective; (mapped 1-1 in subgraph)
 3. $\forall v \in V_G. f_V(v) \in \partial H \Leftrightarrow v \in \partial G$ (exact X map)

Matching Example 1

- cut vertex
- relax vertex
- cut edge
Matching Example 2

Efficient algorithm by graph traversal:
- relaxation built in
- cuts implicit by left-over graph.

Composing Graphs: a picture

Plugging of G and H via the two-sided e-graph π with embeddings p_1 and p_2.

Composing Graphs: Plugging

- $((\pi, \pi X), (F, B))$ a graph, π, with $\pi V = \pi X$ and partition of πV into F and B
- Pair of embeddings: $p_1 : (\pi, \pi X) \to (G, G_X)$ and $p_2 : (\pi, \pi X) \to (H, H_X)$ such that $p_1(F) \subseteq X$ and $p_2(B) \subseteq Y$
- Plugging, $\pi_{p_1}^G(G, H)$, defined by pushout:

\[
\begin{array}{c}
\pi \\
\downarrow \quad p_1
\end{array} \quad G

\begin{array}{c}
\downarrow p_2 \\
\pi_{p_2}^H(G, H)
\end{array}
\]

(minimal graph matched by both G and H where the two π’s are identified)

- Properties: $\pi(G, H) \cong \pi(H, G)$; $G \leq e \pi(G, H)$ and $H \leq e \pi(G, H)$; $K \leq e G$ implies $K \leq e \pi(G, H)$;

Representing Inductive Families of Graphs

Want a higher level language to capture such repeated structure; allow rewriting etc.
!-Box Graphs

\[-\text{Box Graphs} = (G, B) \text{ where } B \text{ is a disjoint set of subsets of } G_V\]

(draw a box around elements of each member of \(B\))

!-Box Matching : \(G\) matches \(H\): \((H \in G\) closed under:

- **copy** : copy subgraph including incident edges some number of times
- **drop** : removes the !-box, keep the contents.
- **merge** : combines two !-boxes: \(\{B_1, B_2, \ldots\} \rightarrow \{(B_1 \cup B_2), \ldots\}\).

Semantics: \([G]!\subset\): subset of matches that have no !-boxes.

Conclusions

- Symmetric monoidal categories have a natural graphical presentation
- Many processes form SMCs with extra equational structure
- High level language for processes motivates !-boxes to capture inductive structure (ellipsis notation)
- Initial goal was to reason about quantum information; also has applications to traditional circuits
- Developed a formalism for equational reasoning over graph-based representations of symmetric monoidal categories
- Implementation: http://dream.inf.ed.ac.uk/projects/quantomatic

Example

- **A** : \(\leq \) copy
- **B** : \(\leq \) merge
- **C** : \(\leq \) drop
- **D** : \(\leq \) merge

Example showing how A matches D