
A Calculus for Conjecture Synthesis

Moa Johansson1, Lucas Dixon2, and Alan Bundy2

1 Dipartimento di Informatica, Università degli Studi di Verona ??

2 School of Informatics, University of Edinburgh
moakristin.johansson@univr.it, {l.dixon, a.bundy}@ed.ac.uk

Abstract. IsaCoSy is a theory formation system which synthesises and
proves conjectures in order to produce a background theory for a new
formalisation within a proof assistant. The key idea we employ to make
synthesis tractable is to only consider synthesis of terms that are not
more complex versions of already known terms. IsaCoSy identifies such
undesirable terms as those that match the left-hand sides of rewrite rules.
In this paper, we slightly generalise this idea to present a formal language
for constraining synthesis such that it does not construct terms that can
be matched by a given set of constraint-terms. We give a mathemati-
cal account of the algorithms involved, and prove their correctness. In
particular, we prove the correctness property for IsaCoSy’s approach to
synthesis: when given a set of rewrite rules as input, it only produces
irreducible terms.

1 Introduction

IsaCoSy is an automated theory formation system for inductive theories [7]. It
takes as input a set of constants to be used in synthesis and a set of known terms,
called constraint-terms, which we want to avoid synthesising ‘more complex’ vari-
ants of. The key idea IsaCoSy uses, to make the synthesis process tractable and
the resulting conjectures interesting, is that synthesis is constrained to only con-
struct terms that are not matched by any term in a set of constraint terms.
IsaCoSy builds progressively larger conjectures, starting from a given top-level
symbol. The system then passes synthesised conjectures to a counter-example
checker [1], which filters out obviously false statements. The remaining conjec-
tures are given to the automatic inductive prover in IsaPlanner [4]. Any theorems
found may be used to generate additional constraints on the synthesis process
and improve proof automation.

IsaCoSy has been applied to generate equations in inductive theories, with the
aim of producing results that can be used as intermediate lemmas within a user’s,
or a proof tool’s, subsequent attempts to prove more involved theorems. The
implementation and evaluation of IsaCoSy has been described in [7]. IsaCoSy
was shown to reduce the size of the synthesis search space by an exponential
factor with respect to a naive generate-and-test style algorithm. IsaCoSy was
furthermore able to generate most of the relevant inductive lemmas occurring in

?? This research was funded by EPSRC grant EPE/005713/1

a + b = b + a a ∗ b = b ∗ a
(a + b) + c = a + (b + c) (a ∗ b) ∗ c = a ∗ (b ∗ c)

(a ∗ b) + (c ∗ b) = (a + c) ∗ b (a ∗ b) + (a ∗ c) = (b + c) ∗ a
rev(rev a) = a (rev a) @ (rev b) = rev (b @ a)

rev(map a b) = map a(rev b) (map a b) @ (map a c) = map a (b @ c)
Table 1. Some examples of synthesised theorems about natural numbers and list.
These all occur in Isabelle’s library. The symbol @ denote append.

Isabelle’s libraries for natural number and lists3, which have been hand-created
by a human user. Library-lemmas missed out by IsaCoSy could typically be
derived easily from ones that were generated. The number of additional theorems
synthesised, not occurring in the libraries, was relatively small. A few sample
theorems synthesised by IsaCoSy are shown in Table 1. The complete synthesised
theories from these experiments are available online4.

To complement the algorithmic description given in [7], we here present a
higher-level, more succinct and general formal description of IsaCoSy’s con-
straint generation and synthesis machinery. Using this account, we prove the
fundamental correctness property for our system: it generates only terms in the
language that are not instances of any term in the constraint-term set. In par-
ticular, when the constraint-term set consists of the left-hand sides of a set of
rewrite rules, we show that only irreducible terms are synthesised.

Previously, the inputs to IsaCoSy were a set of datatypes and function sym-
bols, with initial constraints generated from the left-hand sides of rewrite rules
about these. While, in this case, the constraints force IsaCoSy to only generate
irreducible terms, our generalisation to employing arbitrary constraint-terms
allows some additional heuristics. For instance, a sequence of two or more suc-
cessor symbols can be disallowed by introducing a constraint-term of the form
Suc(Suc(x)). The generalised formalisation also highlighted some redundancies
in the previous version of the language used to express constraints. We plan to
implement our revised constraint language in the next version of IsaCoSy. The
generalised use of arbitrary terms from which to construct constraints has al-
ready been implemented and can be downloaded as part of IsaPlanner/IsaCoSy5.

2 Related Work

Other theory-formation systems, such as MATHsAiD [9], IsaScheme [10] and
Theorema [2, 5] have been applied to inductive theories. However, none of the
algorithms used in those systems, or any other theory formation system that we
know of, have yet enjoyed a formal analysis.

3 http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/index.

html
4 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/synth_results.php
5 http://dream.inf.ed.ac.uk/projects/isaplanner

IsaScheme is a theory formation system which generates conjectures by in-
stantiating a set of schemes, which are higher-order terms, by a given set of
closed terms in all possible ways [10]. While IsaCoSy will consider all irreducible
terms, IsaScheme further restricts its search space by only considering those that
are instances of its given schemes instantiated by its input set of closed terms.
IsaScheme orients candidate equations, and applies Knuth-Bendix completion
to exclude any conjectures that are not valid rewrite rules. Candidate theorems
thus form a rewrite system together with the initial background lemmas from
the theory. Like IsaCoSy, it employs QuickCheck for counter-example checking,
and IsaPlanner for proving remaining conjectures.

The purpose of the MATHsAiD system is to construct theorems that would
be consider interesting by a human mathematician [8, 9]. It takes an axiomatic
description of the initial theory as input and reason forward to derive logical
consequences of these. A range of heuristic measures are then applied to restrict
and filter out anything not deemed interesting.

QuickSpec is a tool for automatically deriving algebraic specifications for
functional programs written in Haskell or Erlang [3]. Unlike IsaCoSy, QuickSpec
simply generates all possible terms up to a given size, and then explore which
ones are equal by testing, using a counter-example finder. It then employs filter-
ing to discard equations that are derivable from the remaining set. QuickSpec
is not connected to an inductive theorem prover, and thus cannot attempt to
prove the conjectures it produces.

3 Background

3.1 Terms

For our purposes, it is convenient to define (possibly partially synthesised) terms
as n-ary trees, captured by the following datatype6:

Definition 1 (Synthesis Terms)

Atom := Const of k | Hole of ?h

Term := App of (Atom ∗ Term list)

Atom is either a hole, representing part of a term still to be synthesised, denoted
?h, or a named constant symbol k . The App constructor is used to represent
function application with the Term list being the functions arguments. A term
that consists of a constant, x, with no arguments is represented by App(x , []).

During synthesis, only holes are allowed to be instantiated by substitutions
as they represent term-positions still to be synthesised. Synthesis may insert
variables bound by universal quantifiers in the term, but as these are not allowed
to be further instantiated during synthesis, they are treated as constants.

6 We have abstracted away type information as it adds no interesting complexity and
clarifies the presentation.

IsaCoSy does not currently consider synthesising terms with lambda-abstractions.
This is equivalent to function synthesis and would greatly increase the size of
the search space.

We write hd(t) to denote the symbol in the head position of a term, e.g.
hd(App(f , args)) = f . We use σ to denote substitutions on terms. The symbols
= and 6= on terms denote syntactic (dis)equality. We use ≡ to represent instanti-
ations of holes. In addition to this notation, we will use the following definitions.

Definition 2 (Ground Term) A synthesised term is ground if it does not con-
tain any holes.

Definition 3 (Grouding Substitution) A substitution σ is a grounding sub-
stitution on a synthesised term t, if tσ is a ground term.

3.2 Positions in Terms

Positions in terms are expressed as paths. These are lists of argument positions
within a term, with the empty list being the top of the term. As an example,
consider the term f(x, g(y)). We show a tree-representation of this term in
Figure 1 with each position tagged by its path-representation.

f

Path[1]

Path[2,1]

Path[2] x

y

g

Path[]

Fig. 1. Term-tree with path-representations of each position highlighted.

We write t[s]p for a term t with a subterm s in position defined by the path
p. The term s can also be referred to by t|p. We write p[i,j] for a path that has
the path pi as a prefix, and is extended by j, where j is an integer. In other
words, p[i,j] is the position j immediately below pi in the term tree. To append
two paths to each other we write pi @ pj .

4 Overview of IsaCoSy

Figure 2 illustrates the synthesis procedure of IsaCoSy.
The initial input to configure IsaCoSy is a set of constant symbols, with which

to synthesise new terms, and a set of constraint-terms. Typically the constants
are those from the basic definitions in a theory. For instance, we give an example
toy-theory for natural numbers in Figure 3; here the functions symbols are +, 0

Initial
Theory

Constraint
Generator

Constraint
Table

Theory
Constraints

Synthesis
Engine

Counter-Example
Checker

Inductive
Prover

Open
Conjectures

Theorems

False
Conjectures

Synthesis
Constraints

Conjectures

Not Falsified
Conjectures

Fig. 2. IsaCoSy’s synthesis process.

datatype Nat =

0

| Suc of Nat

fun plus : Nat => Nat => Nat

where

0 + y = y

| Suc x + y = Suc(x + y)

lemma Suc-Injective:

(Suc n = Suc m) = (n = m)

Fig. 3. An example theory to which IsaCoSy can be applied. It contains the definition
of a recursive datatype Nat, the definition of a function plus and an additional lemmas
capturing the injectivity property of Suc. This lemma is derived automatically by
Isabelle’s definitional machinery for datatypes when the Nat type is declared.

and Suc. The initial constraints are typically generated from the left-hand sides
of defining equations, as well as the left-hand side of any additional rewrite rules.
In our example, this is the definition of + and the lemma Suc-Injective.

The constraint-terms are fed into IsaCoSy’s constraint generation machinery,
which computes a set of initial constraints for synthesis, referred to as theory
constraints. Theory constraints are stored in a table, indexed by the head-symbol
in the term that generated the constraint. Constraint generation is described in
§5.1.

In addition to the constraints from rewrite rules, IsaCoSy may also constrain
synthesis by ordering the arguments for functions that are commutative. We
refer to [7] for more details about heuristics related to commutativity, as it is
not the main focus of this paper.

Theory Constraint
Table

Synthesis
Constraints

Term

Instantiate Hole
in Term

Import Theory
Constraints

Update Synthesis
Constraints

Fig. 4. The synthesis engine. While there are still open holes in the term, IsaCoSy picks
a hole and a symbol to instantiate it with, in accordance with the constraints. New
constraints for new holes are imported for the relevant symbol, and old constraints are
updated to take the instantiation into account.

The input to the synthesis engine is a term containing holes, standing for
the parts yet to be synthesised. At each step of synthesis, a hole is picked and
instantiated with a symbol. If this is a function symbol, new holes are also
introduced, corresponding to the arguments of the function. The symbol chosen
to instantiate a hole is picked from the set of symbols allowed by the synthesis
constraints.

During the synthesis process, IsaCoSy imports theory constraints for the con-
stants which are used to instantiate a hole (typically these constants are function
symbols). The set of constraints applicable to a particular synthesis attempt are
referred to as synthesis constraints. Synthesis constraints are updated and mod-
ified as the term becomes instantiated, while theory constraints remains static.
Figure 4 shows the steps of the synthesis engine in more detail. IsaCoSy will
thus synthesise a set of terms adhering to the relevant constraints.

Example 1. Consider a partially synthesised term ?h1+?h2 =?h3, and suppose
we pick ?h1 to be instantiated next. The synthesis algorithm now has to pick a
symbol to instantiate ?h1.

The synthesis constraints on the term will forbid picking 0 or Suc as either
of these would produce a term that matches one of the two rewrite rules from
the definition of addition in Figure 3.

The algorithm may however choose to instantiate ?h1 with +, resulting in an
updated term with two new holes: (?h4+?h5)+?h2 =?h3. After instantiation, any
new applicable constraints are imported from the theory constraints of the newly
introduced symbol. Here, we import constraints about +, which will restrict
instantiations of ?h4 and ?h5.

The synthesis algorithm is described in more detail in §6.
IsaCoSy divides synthesis into iterations, starting from a given smallest term

size, and incrementally increasing the size. For each term size, a set of terms

are synthesised. After each iteration the set of synthesised terms are filtered
through counter-example checking and then passed on to the prover. Any the-
orems proved are used to generate additional theory constraints, which can be
used in the next iteration to further constrain the synthesis of larger terms.
Proved theorems are also used by the prover in subsequent proofs. This makes
the prover more powerful as more theorems are discovered.

5 Constraint Language

The purpose of the constraint language is to express restrictions on synthesis in
order to avoid generating any terms that match known terms from the constraint-
term set. For instance, when the constraints are generated from rewrite rules, no
terms containing a redex matching a known rewrite rule should be synthesised.
This keeps the synthesis search space size manageable and avoids the generation
of more complex versions of already known theorems. The constraints specify
which positions are not allowed to be instantiated to certain constants, as well
as which positions are not allowed to be instantiated to equal terms. They may
also restrict certain symbols to ensure that they do not occur in certain positions
at the same time.

A term t satisfies a constraint c, if it cannot be unified with the term from
which c was generated. In the case where the constraint was generated from
the left-hand side of a rewrite rule, this corresponds to t not having a redex for
that rule. Otherwise, we say that t violates the constraint. Definition (7) in §5.2
specifies the Satisfies relation.

Referring to positions as paths from the top of the term tree allows us to
simplify and revise the constraint language compared to that presented in [7].
In previous work, the constraint language was unnecessarily complicated as the
constraints were built as a tree-like structure reflecting the underlying term. The
simplified definition for the constraint language is:

Definition 4 (Constraint Language)

Constr := NotConst(p, k) | UnEqual(p1, . . . , pn) | c1 ∨ c2 | > | ⊥

The NotConst constraints express that a constant symbol is not allowed to occur
in position p. The UnEqual constraints specify a list of positions not allowed to
be instantiated to equal terms. In addition, the language allows disjunctions of
constraints, c1 ∨ c2, and contains the two constant constraints > and ⊥, which
are trivially satisfied and violated respectively7.

We also clarify the difference between theory constraints and synthesis con-
straints:

7 The disjunction subsumes the IfThen and NotSimult constructors from [7]. Also
note that NotConst subsumes both the constraints NotAllowed and VarNotAllowed
in [7].

– Theory constraints are generic constraints associated with particular con-
stant symbols. They arise from terms given to IsaCoSy’s constraint genera-
tion algorithm.

– Synthesis constraints are associated with a particular synthesis attempt and
are updated during the synthesis process, as the term is built.

To disambiguate, we write theory constraints with a subscript T and synthesis
constraints with a subscript S , e.g. NotConstT and NotConstS .

5.1 Constructing Constraints

Suppose we want to generate the constraints from a term t:

– For each position p in t containing a constant symbol k we produce a con-
straint NotConstT (p, k).

– If there are several distinct positions pj , . . . pm in t, that contain the same
variable, we produce a constraint UnEqualT (pj , . . . , pm).

A term will often give rise to a set of constraints for different positions. We
call these dependent constraints. They express instantiations not simultaneously
allowed. Synthesis may violate some of those constraints, but not all of them,
so the final step of constraint generation is to create a disjunction of all the
constraints for the rule. This is formally expressed as:

Definition 5 (Theory Constraints for a term t)

ThyConstrs(t) :=∨
({NotConstT (p, k) | t|p = k ∧ IsConst(k)} ∪

{UnEqualT (pj , . . . , pm) | t|pj
= . . . = t|pm

∧ pj 6= pm

∧ IsVar(t|pj
) ∧ . . . ∧ IsVar(t|pm

)})

Here we let
∨

stand for the disjunction of the constraints in a given set. The
predicate IsConst, is true iff a term is a constant, while IsVar is true iff the term
is a variable.

Example 2. Suppose IsaCoSy generates a constraint from the term 0 + y (from
the LHS of the rewrite rule 0 + y = y, in the definition of addition in Figure
3). As there are no variables occurring more than once, IsaCoSy generates the
constraint:

NotConstT (Path[],+) ∨NotConstT (Path[1], 0)

This specifies that is a position contains the symbol +, then it is forbidden
to instantiate the first argument of + to be 0. A similar constraint is generated
for the Suc-case.

Example 3. As a slightly more complex example, consider a term f(x, g(x)). The
position Path[] contains the symbol f , while position Path[2] contains the symbol
g and positions Path[1] and [2, 1] both contain the variable x. This produce the
constraint:

NotConstT (Path[], f)∨NotConstT (Path[2], g) ∨UnEqualT (Path[1], Path[2 , 1])

The theory constraints are stored in mapping from a function symbol f to sets
of constraints where f occurs in the head position (i.e. where it has a theory
constraint with Path[]).

Definition 6 (Theory constraints of a function f)

ThyConstrs(f) = {c |NotConstT (Path[], f) ∈ c}

We use the notation NotConstT (Path[], f) ∈ c to specify any constraint where
NotConstT (Path[], f) is one of the disjuncts in c.

5.2 Semantics of Constraints

We define a function Satisfies(t, c) defined below, which takes a ground term t
and a constraint c and returns returns True iff the term satisfies the constraint.
Otherwise t violates the constraint. Recall that as t is ground it does not contain
any holes.

Definition 7 (Semantics for Constraints) The Satisfies function is defined
below for the constructs of the constraint language:

NotConst:
Satisfies(t , NotConst(p, k)) =⇒ t|p 6= k

UnEqual:

Satisfies(t,UnEqual(p1, . . . , pn)) =⇒
∀i ∈ {1 . . . n}. t|p1 6= t|pi ∨ . . . ∨ t|pn 6= t|pi

Or:
Satisfies(t, c1 ∨ c2) =⇒ Satisfies(t, c1) ∨ Satisfies(t, c2)

Top:
Satisfies(t, >) =⇒ True

Bottom:
Satisfies(t, ⊥) =⇒ False

If the constraint refers to paths longer than is possible in t, the constraint is
trivially satisfied.

The constraint update mechanism (see Def. (9) in §7), is a lazy unfolding
of Satisfies, operating over the terms in the process of being synthesised, which
may contain holes.

5.3 Correctness of the Constraint Generation Algorithm

We will now prove the constraint generation mechanism is correct, in the sense
that it produces exactly those constraints which exclude terms matching any of
those in the constraint-term set. In the case of constraints from rewrite rules,
this means excluding any reducible terms.

The correctness properties below were stated in [7], but not proved. Using
the Satisfies function (Def. 7) allows us to prove this theorem. Our correctness
proof consists of two parts. We first show the sufficient coverage property: that
the constraints generated cover all instances of the term they were generated
from. We then show that the constraints only correspond to the terms they were
generated from, the no over-coverage property.

We refer to terms from which constraints have been generated as constraint
terms and use the notation Constraints(l) for the disjunction of constraints the
algorithm generates for the term l. We say that a term s is an instance of l if
there is a substitution σ such that s = lσ.

Lemma 1 (Sufficent coverage). Given a term t and a constraint-term l, if t
contains a subterm s, which is an instance of l, then t violates Constraints(l).

Proof. Constraints(l) is a disjunction: c1 ∨ . . . ∨ cn. The constraint is violated
when Satisfies(s, c1 ∨ . . . ∨ cn) evaluates to false.

There are two cases, depending on the type of each disjunct:

NotConst: By construction, each position pi in l containing a constant symbol
k, will have contributed a constraint NotConstT (pi, k). However, as s is
assumed to be an instance of l, the position pi in s must contain k, or else
s 6= lσ.
Hence, Satisfies(s, NotConstT (pi, k)) evaluates to false for all disjuncts that
are NotConstT constraints.

UnEqual: By construction, each set of positions pj , . . . pm in l containing the
same variable x, will contribute a constraint:

UnEqualT (pj , . . . , pm)

By assumption s = lσ and the substitution σ must map the variable x to
the same term everywhere it occurs in l, namely the term represented by the
sub-trees starting at pj , . . . , pm in s, which must be identical.
By the semantics for UnEqualT in definition (7):

Satisfies(s, UnEqualT (pj , . . . , pm))

will evaluate to false when the sub-trees rooted at s|pj
, . . . s|pm

are identical.

Thus Satisfies(s, c1 ∨ . . . ∨ cn) evaluates to false, as s violatesConstraints(l).
Hence also t[s] violates the constraint.

Lemma 2 (No over-coverage). Given a constraint-term l, if t is a term that
violates Constraints(l), then there is a subterm in t that is an instance of l.

Proof. By contradiction, assume no subterm of t is an instance of l. Constraints(l)
is a disjunction: c1 ∨ . . . ∨ cn. As t violates the constraints, we know there must
exist a subterm t[s], such that Satisfies(s, c1 ∨ . . .∨ cn) =⇒ False. By definition
(7), we hence have Satisfies(s, ci) =⇒ False for each ci, 1 ≤ i ≤ n. We have two
cases, depending on the type of each ci:

NotConst: By construction, each position pi in l containing a constant sym-
bol k, will have contributed a constraint NotConstT (pi, k). We know that
Satisfies(s, NotConstT (pi, k)) = False, so we must have s|pi

= k for each
position pi. Hence s and l contain the same constant symbols in the same
positions.

UnEqual: By construction, all position pj . . . pm containing the same variable
x in l, will have contributed a constraint

UnEqualT (pj , . . . , pm)

As Satisfies(UnEqualS (s, pj , . . . , pm) =⇒ False, s must contain identical
subterms s|pj = . . . = s|pm. Hence there exist a substitution σ such that
s = lσ where σ{x 7→ s|pj

}.

As s and l agree on all positions of constant symbols, and we can find a sub-
stitution for the variables in l with subterms of s, then s is an instance of l,
contradicting our assumption. Hence, t violates Constraints(l) whenever it has
a subterm s which is an instance of l.

Theorem 1 (Exact coverage). Given a term t and a constraint-term l, the
constraint produced by the constraint generation algorithm is satisfied by t iff
there is no subterm within t that matches l.

Proof. Follows from lemmas 1 and 2.

6 The Synthesis Algorithm

When synthesising a term, IsaCoSy picks an open hole and explores all instanti-
ations adhering to the constraints. The synthesis algorithm applies the inference
rules specified in Def. (8) to a partially synthesised term, t, that contains some
uninstantiated hole ?h.

In addition to a partially synthesised term, the synthesis rules refer to a
collection of synthesis constraints, C, associated with t, denoted by C ‖ t. As
described above, each constraint c ∈ C may be a disjunction, forbidding the
combination of instantiations that would render a particular rewrite rule appli-
cable to a subterm of t. We write Ch for the constraints in C which contain a
reference to the (position of) hole ?h.

Definition 8 (Syntesis Algorithm) The synthesis algorithm instantiate holes
by the following two rules:

Function: ?h ≡ f(?h1 . . .?hn)

C ‖ t[?h]pi

(C 7→ (∀ c ∈ Ch. Update(c))) ∪ Constrs(f) ‖ t[f(?h1 . . .?hn)]pi

if

f ∈ Dom(?h)
NotConstS (?h, f) /∈ Ch

Constrs(f) = {c | c ∈ ThyConstrs(f) ∧ ∀pj ∈ c. pj 7→ pi @ pj}

Constant: ?h ≡ k

C ‖ t[?h]pi

C 7→ (∀ c ∈ Ch. Update(c)) ‖ t[k]pi

if
{

NotConstS(?h, k) /∈ Ch

The function Update, used in the rules above, takes a constraint (which might
be a conjunction of dependent constraints) on the instantiated hole and updates
it according to the constraint update algorithm (see Def. 9). We use Constrs(f)
for the new constraints that are introduced on new holes arising from instantiat-
ing some hole with a function symbol f . These come from the theory constraints
associated with f (see Def. (6)).

All paths defining positions in a theory constraint are prefixed by the path
to the position of the newly instantiated hole to construct the new synthesis
constraints. This captures that the new constraints apply to a subterm of the
whole synthesised term, rooted at the position of the newly instantiated hole.

We use Dom(?h) as the set from which synthesis selects candidate instanti-
ations of a compatible type for a hole ?h. Synthesis tries all instantiations that
are not forbidden by the presence of a singleton NotConstS constraint8.

The correctness of the synthesis algorithm is that it maintains the invariant
that, after each step where a hole is instantiated, no active constraint in C is
violated (see lemma 3).

7 Constraint Update Algorithm

After each instantiation during synthesis, the constraints associated with the
term must be updated to reflect any new holes created, and propagate existing
constraints onto these. The function Update is a lazy unfolding of the Satisfies
relation. We write ph for the position of the instantiated hole ?h. The Update
function is defined as follows:

Definition 9 (Constraint Update Function)

NotConst-violation: ?h ≡ s, hd(s) = k.

Update(NotConstS(ph, k)) =⇒ ⊥
8 In the implementation, constant symbols occurring in singleton constraints are in

fact removed from the domain of the relevant hole, but for the purpose of clarity the
constraints have been made explicit in here.

NotConst-satisfied: ?h ≡ s, hd(s) 6= k.

Update(NotConstS(ph, k)) =⇒ >

UnEqual-Fun: ?h ≡ f(?h1 . . .?hm)

Update(UnEqualS(ph, p1, . . . , pn)) =⇒
NotConstS(p1, f) ∨ . . . ∨NotConstS(pn, f) ∨

UnEqualS(ph1
, p[1, 1], . . . p[n, 1])∨ . . .∨UnEqualS(phm

, p[1, m], . . . p[n, m])

UnEqual-Const: ?h ≡ k

Update(UnEqualS(ph, p1, . . . , pn)) =⇒
NotConstS(p1, k) ∨ . . . ∨NotConstS(pn, k)

Or:
Update(c1 ∨ c2) = Update(c1) ∨Update(c2)

The correctness of the constraint update machinery is crucial to the efficiency
and correctness of the entire synthesis process. We will now prove this.

Theorem 2 (Correctness of Constraint Update). Suppose we have a term
t[?h]ph

and instantiate the hole ?h ≡ s. For each constraint c ∈ Ch, satisfiability
is preserved over Update:

Satisfies((t[s]ph
)σ, c) = Satisfies((t[s]ph

)σ, Update(c))

where σ is an arbitrary grounding substitution.

Proof. Let t′ = (t[s]ph
)σ and c′ = Update(c). There are three cases, depending

on the type of c:

1. c is of the form NotConstS(ph, k):

(a) Assume s 6= k. The rule NotConst-satisfied applies, which returns the
updated constraint >. Applying the Satisfies function to both the new
and old constraints gives:

c′ : Satisfies(t′, >)⇒ True

c : Satisfies(t′, c)⇒ s 6= k ⇒ True

Hence both the old and new constraints evaluate to true.
(b) Assume s = k. Then the rule NotConst-violated applies, which detects

that c′ = ⊥, By the semantic for NotConstS , and the instantiation ?h ≡
k, Satisfies produce the following:

c′ : Satisfies(t′, ⊥)⇒ False

c : Satisfies(t′, c)⇒ k 6= k ⇒ False

Hence both the old and new constraints evaluate to false.

2. c is of the form UnEqual(ph, q1, . . . , qn):
(a) Assume ?h is instantiated to constant k. Then the rule UnEqual-Const

applies. The updated constraint c′ returned is:

c′ : NotConstS(q1, k) ∨ . . . ∨NotConstS(qn, k)

Evaluating the updated and old constraints respectively gives:

c′ : Satisfies(t′, c′)⇒ hd(t′|q1) 6= k ∨ . . . ∨ hd(t′|qn) 6= k

c : Satisfies(t′, c)⇒ (t′|q1) 6= k ∨ . . . ∨ (t′|qn) 6= k

Clearly Satisfies(t′, c′) only evaluates to true when at least one of hd(t′|qi) 6=
k holds. Note that in this situation Satisfies(t′, c) will also be true, as
it contains the corresponding conjuncts t′|qi 6= k.
If Satisfies(t′, c′) evaluates to false, then all its conjuncts are false, which
means that hd(t′|q1) = k ∨ . . . ∨ hd(t′|qn) = k Hence all (t′|qi)σ must be
equal. In this situation, all inequalities between t′|qi ’s in Satisfies(t′, c),
will also evaluate to false.

(b) Now assume ?h is instantiated to a function, introducing new holes for its
arguments: f(?h1, . . .?hm). Here t′ abbreviate (t[f(?h1, . . . , ?hm)]ph

)σ.
The rule UnEqual-Fun applies and returns the updated constraint c′:

NotConstS(q1, f) ∨ . . . ∨NotConstS(qn, f)

i=m∨
i=1

UnEqual(p[h, i], q[1, i], . . . q[n, i])

As before, we can apply a grounding substitution to the term resulting
from the hole’s instantiation, and evaluate the updated constraint to:

Satisfies(t′, c′)⇒ hd(t′|q1) 6= f ∨ . . . ∨ hd(t′|qn) 6= f ∨
∀i ∈ {1 . . . n}. t′|p[h,1] 6= t′|q[i,1] ∨ t

′|q[1,1] 6= t′|q[i,1] ∨. . .∨ t
′|q[n,1] 6= t′|q[i,1]

∨ . . .∨
∀i ∈ {1 . . . n}. t′|p[h,m]

6= t′|q[i,m]
∨ t′|q[1,m]

6= t′q[1,m]
∨. . .∨ t′|q[n,m]

6= t′|q[1,m]

The original constraint c, given the instantiation of ?h evaluates to:

Satisfies(t′, c)⇒ t′|q1 6= f(?h1, . . . , ?hm)σ ∨. . .∨t′|qn 6= f(?h1, . . . , ?hm)σ

Assume Satisfies(t′, c′) evaluates to true. Either, one of the disjuncts
hd(t′|qi) 6= f does indeed have a symbol other than f in the head-
position, in which case the corresponding disjunct in sat(t′, c), namely
t′|qi 6= f(?h1, . . . , ?hm)σ, will also be true, so both constraints evaluate
to true. Otherwise, the difference is further down the term-tree. For c′,
at least one of the disjuncts t′|q[x,z]

6= t′|q[y,z]
must hold9. In this case,

9 Here x and y range over the positions required to be unequal in the constraint:
1 ≤ x, y ≤ n, while z ranges over the arguments of the function f : 1 ≤ z ≤ m

for c, we must compare the term trees further down, as the top level
symbols were all the same. This means inspecting exactly the sub-trees
rooted at t′|q[i,j] 6= t′|q[k,j]

, the same as for c′. Hence Satisfies produces
the same result in both cases.
Assume Satisfies(t′, c′) evaluates to false. Then all disjuncts hd(t′|qi) 6=
f are false, as well as all disjuncts for terms further down the tree. In
other words, we must have all t′|qi equal. In this case, Satisfies(t′, c)
also evaluates to false.

Hence, the constraint update function is correct, it always return a constraint
which preserves satisfiability of the original constraint after the instantiation of
a hole.

8 Correctness of the Synthesis Algorithm

Having established the correctness of the constraint update algorithm, we can
now prove the correctness of the synthesis algorithm.

Lemma 3 (No instances of constraint-terms). After each instantiation of
some hole by the synthesis algorithm, the partially synthesised term t does not
contain any subterm that is an instance of any constraint-term.

Proof. By contradiction. Assume there is a subterm s in t which matches some
constraint-term sg: g(x1, . . . , xn). We thus have g(x1, . . . , xn)σ ≡ s. Then s must
have the same top-level constant symbol as the constraint-term, namely g, which
must have been introduced by the rule Function from Def. (8).

This instantiation would have added the set of constraints associated with g,
Constrs(g), to the set of constraints C associated with the term t that we are
synthesising. We know that there is a constraint associated with the constraint-
term sg in Constrs(g).

Furthermore, there must have been one last hole ?h that was instantiated
in s to make it match sg. By Theorem 2, the original constraint cg may have
been updated to a constraint c′g, which evaluates to the same boolean value on
the s. Either the position ph of the last hole occurs in one of the conjuncts of
the initial constraint, or it has been introduced by updates to some UnEqual
constraint. As we shall see, c′g must at the point of instantiation of ?h consist of
a single NotConstS constraint, which would have prevented synthesis from ever
instantiating ?h in such a way as to produce the reducible subterm s.

1. ph is mentioned in cg:
We assume cg was initially a disjunction cg1 ∨ . . . cgh ∨ . . . ∨ cgn. Because s
is assumed to be an instance of sg, all disjuncts except cgh must have been
violated, and evaluated to false.
cgh = NotConstS(?h, k): This constraint was generated as sg contains the

symbol k in position ph. Hence, we must instantiate ?h to k for to build
an instance of sg. Synthesis can do this by applying the Constant rule
from Def. (8). However, the side-condition of the rule forbids such an

instantiation. Hence, s cannot be synthesised, and we have a contradic-
tion.

cgh = UnEqualS(p1, . . . ph, . . . pn): The constraint-term sg must have con-
tained the same variables in the positions mentioned. As we assume ?h
is the last hole to be instantiated, all other positions mentioned in the
constraint, must have been instantiated to the same constant as in sg.
This would have updated the constraint by the rule UnEqual-const, to
n NotConstS constraints. All of these except the one mentioning ?h must
have been violated. As above, this prevents synthesis from instantiating
?h to the symbol that would make it and instance of sg.

2. ph has been introduced through constraint updates:
Some position above ?h will have been involved in a constraint:

UnEqualS(p1, . . . pn)

All positions up to the level on which ?h occurs must have been instan-
tiated to equal terms, which in turn recursively introduce new UnEqualS
constraints for each level. For the level of ?h, the other holes must have been
instantiated to the same constant, as ?h is the last hole. The proof is then
analogous to the second part of Case 1.

Theorem 3 (Correctness of synthesis). The synthesis algorithm only pro-
duces terms that are not instances of any constraint-term.

Proof. By lemma 3, the synthesis algorithm maintains the invariant that no in-
stantiation produces a subterm that is an instance of any term in the constraint-
term set. This obviously also holds for the final iteration, so each term produced
is irreducible.

From the above theorem we get the following corollary for the special case
when constraints are generated from rewrite rules:

Corollary 1 (Synthesis of irreducible terms). When the constraint-term
set is derived from the left-hand sides of a set of rewrite rules, the synthesis
algorithm only produce terms that are irreducible.

9 Conclusions and Further Work

We have presented a formal account of term synthesis in IsaCoSy. This introduces
a much simpler constraint language than that previously presented in [7]. Using
this language, we described the constraint generation and synthesis machinery
in a more general fashion than previously, abstracting away implementation
details. This clarifies what the techniques does (and does not do), and facili-
tates future re-implementation. Moreover, the simplicity of the concept behind
IsaCoSy, along with the mathematical language, admit a mathematical analysis
of the properties of theory exploration.

The mathematical account has allowed us to prove important properties
about IsaCoSy. We proved the correctness of the machinery for generating con-
straints from rewrite rules, as well as the correctness of constraint updates during
synthesis. Finally, we also proved the correctness of the synthesis algorithm itself.

We believe that formal accounts of theory exploration will be helpful in en-
abling comparison between different approaches to theory formation by clearly
highlighting the fundamental properties of different systems. This is the first
mathematical account of a property of theory exploration that we are aware
of. As further work, we plan to include the simplified constraint language in
the implementation of IsaCoSy. An interesting direction for further theoretical
work on theory formation, based on IsaCoSy’s approach, is consider when the
need for generalisation can be avoided by synthesising the needed background
lemmas. Some results showing the potential of this idea, compared to other
lemma-speculation techniques, can be found in [6].

References

1. S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In SEFM ’04:
Proceedings of the Software Engineering and Formal Methods, Second International
Conference, pages 230–239. IEEE Computer Society, 2004.

2. B. Buchberger, A. Craciun, T Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkrantz, and W. Windsteiger. Theorema:
Towards computer-aided mathematical theory exploration. Journal of Applied
Logic, 4(4):470–504, 2006.

3. K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing formal specifica-
tions using testing. In TAP’10 Proceedings of the 4th international conference on
Tests and proofs, volume 6143 of LNCS, pages 6–21. Springer, 2010.

4. L. Dixon and J. Fleuriot. Higher-order rippling in IsaPlanner. In TPHOLs-17,
LNCS, pages 83–98. Springer, 2004.

5. M. Hodorog and A. Craciun. Scheme-based systematic exploration of natural
numbers. In Synasc-8, pages 26–34, 2006.

6. M. Johansson, L. Dixon, and A. Bundy. Dynamic rippling, middle-out reason-
ing and lemma discovery. In Verification, Induction, Termination Analysis, vol-
ume 6463 of Lecture Notes in Computer Science, pages 102–116. Springer, 2010.
10.1007/978-3-642-17172-7 6.

7. M. Johansson, L. Dixon, and A. Bundy. Conjecture synthesis for inductive theories.
Journal of Automated Reasoning, pages 1–39, 2011. 10.1007/s10817-010-9193-y
(To appear in print, published online at: http://www.springerlink.com/content/
bk711q2u247mr967).

8. R. McCasland and A. Bundy. MATHsAiD: a mathematical theorem discovery
tool. In Proceedings of the 8th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 17–22. IEEE CS, 2006.

9. R. McCasland, A. Bundy, and S. Autexier. Automated discovery of inductive
theorems. Special Issue of Studies in Logic, Grammar and Rhetoric: Festschrift in
Honor of A. Trybulec, 10(23):135–149, 2007.

10. O. Montano-Rivas, R McCasland, L. Dixon, and A Bundy. Scheme-based synthesis
of inductive theories. In Proceedings of the 9th Mexican International Conference
on Artificial Intelligence, volume 6437 of LNCS, pages 348–361. Springer, 2010.

